STATE LEVEL ENVIRONMENT IMPACT ASSESSMENT AUTHORITY

SEAC- 2014/CR-343/TC-2 Environment department Room No. 217, 2nd floor, Mantralaya Annex, Mumbai- 400 032. Dated: 31 December, 2015

To, M/s. Ghatge Patil Industries Ltd Plot No.D-2, Kagal-Hatkanagale 5 Starred MIDC, Kolhapur- 416 216

Subject: Environment Clearance for proposed Metallurgical Industrial Activity-Foundry and Core Shop with Production Capacity of 6000 MT/M at Plot No. D-2, Kagal-Hatkanagale 5 Starred MIDC, Kolhapur by M/s. Ghatge Patil Industries Ltd.

Sir,

This has reference to your communication on the above mentioned subject. The proposal was considered as per the EIA Notification, 2006, by the State Level Expert Appraisal Committee-I, Maharashtra in its 99th meeting and decided to recommend the project for prior environmental clearance to SEIAA. Information submitted by you has been considered by State Level Environment Impact Assessment Authority in its 88th meeting.

2. It is noted that the proposal is considered by SEAC-I under screening category 3 (a), B1 as per EIA Notification 2006.

Brief Information of the project submitted by Project Proponent is as:

Name of the Project	Proposed Establishment of Metallurgical Industrial activity with production capacity of 6000MT/M of Ferrous castings (SG Iron & Grey Iron) of M/s. Ghatge Patil Industries Ltd. (Plant No. 2)
Project Proponent	Mr. Kiran Jaykumar Patil M/s. Ghatge Patil Industries Ltd. (Plant No. 2)
Consultant	Mr. Pradeep Joshi / Dr. Prashant Banne M/s. Green Circle, Inc
New Project / Expansion	New
Activity schedule in the EIA Notification	The Project falls under the Category B of schedule '3(a) 'of EIA notification 2006
Area Details	Total plot area (sq. m.): 66289.00 Existing Built up area (Sq. m.): 31406.15
Name of the Notified Industrial area / MIDC	Kagal-Hatkanangle Five Star Industrial area MIDC, (Plant No. 2) Plot D-2, Village Talandge, Tal: Hatkanangle, Dist. Kolhapur, Maharashtra
TOR given by SEAC? (If yes then specify the meeting)	Yes, 69 th SEAC meeting held on 04.04.2013

Estimated capital cost of the Project	Total: 146.41 c	r.						
Location details of the project:	Latitude: 16°3 Longitude: 74° Location: MII Elevation above	22'2 C-	27.97"E Kagal-H	atkan			strial	area MIDC,
Raw materials (including process chemicals, catalysts, & additives).	List of raw materials to be used		'Physical and chemical nature of raw material		antity ines/ r) full duction acity	Source of materi als	ti id () s s j	Means of ransportat on Source to torage ite) with ustification
	Pig Iron MS scrap	1972/95	lid	1,20 MT	0, <mark>000</mark> /Y	Open market Open market		By Road By Road
Production details	Name of Products, By products and Intermediate Products SG Iron, Grey Iron	5	Existing (MT/Ye	The same of the sa	(New/	ization /		al (MT/Year)
Process details / manufacturing details Rain Water Harvesting (RWH)	(1) Receipt of F (4) Core Settlin (7) Cooling and As it is new uni provided and er Level of the Gr Size, nos. of rec 5 Nos. of Recha Percolation tres	g → I Kno it, an ithano ound charge	(5) Melt ockout — d industr ced in fut water ta te pits and pits (Size	y is loure. ble: 1 d Qua	Breaking ocated in 20 M belantity: (2 M) with	furnace → (of Runners MIDC all f ow GL th 100 M de	(6) Po and I aciliti	ouring → Risers ies are
Total Water Requirement	Total water requestream of the water (Control of the water (CMD)) Cooling water (CMD) Cooling water (CMD) Could water & Source of the water (CMD) Cooling water (CMD)	uiren CMD er (C. er: : 2: CMI oftne on (C. D):	nent:): & Sou MD):75 50 D):450 r plant (CMD):(rce : {	315, MID			ñ
Storm water drainage	As industry is lo in future Natura nala in MIDC A Size of SWD:	ocate al wa area	d in MID ter drains quantity	ge pa	ittern: Pe orm wate	rcolation tr	ench i	
Sewage generation and Treatment	Amount of sew Proposed treatm STP (MBR base	age g	eneration for the se	i (CN wage	ID)- 50 n : domesti	c effluent v		e treated in
Effluent characteristic	2000 PM		neters BOD,		effluent	100000000000000000000000000000000000000		Effluent discharge

			COD, hea metal, etc				- 3	Charact tics	eri	standards (CPCB /MPCB)
		1	pН		6.5-8.5		6	5.5-8.5	-7.	5.5-9.0
# N	а	2	BOD 3 da	ys	100 mg/l		30 mg/l			<100
		3	COD		250 mg	g/1	1	00 mg/	7	<250
		4	Total Suspended Solids	d	150 mg	g/l		0 mg/l		<100
ETP details	Capaci	ty of	of effluent generation (CMD): 25 m ³ ty of the ETP (CMD)—30 m ³ at of treated effluent recycled (CMD):							
Disposal of the ETP sludge (If applicable)			VTSDF, Ra				,			
Solid waste Management	Sr. No	Source		Q	ty	Form (Sludge / Dry / Slurry etc.)		Composition		ition 54
	1	Dust collector- dust		50 M	00 T/M) Dry		-		
	2	_	P Sludge		MT/A	Slud	ge	(<u>121</u>)		
× .	3	Moulding sand		-	IT/M			-		38 19
	4	Metal scrap		-	T/M	Dry				
	5	Empty tins/cans of chemicals		10	000 nos.	Dry		-		*
	6	Waste oil/ transformer oil		2	KL/M	Liquid		-		4
	7	1000000	Burnt sand & broken cores		000 T/M	Dry		•		
	8	STP sludge (dried)			2 T/A	Slud		-		
	metal pro Possible	users	ossibilities waste is rec of solid was	cycle iste:	ed land fill	ing				
Atmospheric	Sr. Polluta			al of solid waste: Having e			Emis			ncentration
Emissions (Flue gas	No.		of				rate (kg/h	E T		lue gas
characteristics SPM, SO2, NOx, CO, etc.)	1	SPM	PM DG S HPM		Set, Sand plant, IL, Knockout, oring, Sand				_	gligible

	2	S02		Inducand I	ction s ction F ouring Set, Indace and	urnac secti ductio	on on			Negligible	
	3	NOX	X	DG S	Set, Incace and			7		Negligible	
Stack emission Details:	Stack	details	:					D.S.			
(All the stacks attached to process	Stac No.	k /	Attache	ed to	Heigh (Mtr.		Diam (Mtr.)		APC	S provided	
attached to process units, Boilers, captive power plant, D.G. Sets, Incinerator both for existing and proposed activity). Please indicate the specific section to which the stack is attached. e.g.: Process section, D.G. Set, Boiler, Power Plant, incinerator etc. Emission rate (kg/hr.) for each pollutant (SPM, SO2, NOx)	1 Indu furna pour		Inducti furnace pouring section	uction nace & nring			1.7		Fume extraction system followed b spark arrester & cassette type dust collector		l by
	2		Sand Plant, HPML, Knockout, Decoring Section		25	2.5			cassette type dust collector		st
	3	4	Sand D	ryer	30		1.0		by r	lone type di ector follow everse pulse dust collec	ed e jet
	4		Tri Eth Amine Extract system	ne action	18.5	1.0			Wet	Wet scrubber	
	5		D. G. S 750 K	Set	As per As per norms norm			-			
Emission Standard	Induct	tion Fu	rnace :								
	U CAS-ELVESTAGE AND	(SPM, SO2, Setc) L		mission tandard imit		Proposed Limit (mg/Nm3)			MPCB Consent (mg/Nm3)		
	SPM				ng/Nm3) 150		<100		<150		
Ambient Air Quality Data	Pollu	itant	ant P		ible d			centration		rks	
	PM ₁	0	10	00 μg/i	m^3					n limit	
	PM:		60	0 μg/m	13	-	to18.	-		n limit	
	SO2		8	0 μg/m	13	-	to 16.6	,		Within limit	
	Nox		8	0 μg/m	13		to 9.0		Within limit		
	CO		2.	-4 mg/	m³	0.40) to 1.2	24	Withi	n limit	

Details of Fuel to be used:	Sr. No	Fuel		Daily Consumption TPD/KLD)			Calorific alue Kcals (g)	% Ash	% Sulph ur					
4			E	xisting	Proposed		-0/							
	3	HSD		- Breeze and	250 L/hr	_								
	7	Other Elect ity)	100	# #	19.5 MVA									
	Sour	Source of fuel: Authorized vendors												
	A SECOND STREET				iel to site:	Rv I	Road							
Energy	Total	Power	Requ		MW): 19.5				*					
Green Belt Development	Green • Nur	n belt a nber ar	rea (Sond spec	q. m.): 33 cies of tre	% of the to	ante	d: It is pr	opose	d 1500 tr					
Details of Pollution Control Systems:	Sr. N	isou to	50 100	Existing pollution control system Proposed to be ins										
	1	Air					Fume extraction system followed by spark arrester & cassette type dust collector, Cyclone type dust collector, Wet Scrubber Effluent Treatment Plant, Sewage Treatment Plant Adequate measures for control of noise levels will b implemented to Maintain noise levels.							
	2	Water	r											
	3	Noise	>.	-	* · · · · · · · · · · · · · · · · · · ·									
	4	Solid Waste		-			Landfilling, Recycling and CHWTSDF, Authorized reprocesses / vendors							
Environmental			The second	100	p): 672.67									
Management plan Budgetary Allocation	. 02	ivi cust	SR. NO.): 65.35 L METE	SE' CO	Γ UP ST lakhs)	& MA CO	ERATIO INTAIN ST lakhs/yr)	ACE				
	1.		ETP &	STP	124	4.78 5.25								
	2		2	Enviror Monitor	CANADA CARACTER	2.00)	5.00	0					
	e v		.3	Occupa health	tional	81.7	76	8.00	0	Up.				
w A 4 1			4	Air and pollutio		441	.22	45.0	00					

	control			
5	Green Belt development	18.94	2.00	
6	Rain Water Haevesting	3.97	0.10	0 = 10
то	TAL COST	672.67	65.35	

3. The proposal has been considered by SEIAA in its 88th meeting & decided to accord environmental clearance to the said project under the provisions of Environment Impact Assessment Notification, 2006 subject to implementation of the following terms and conditions:

General Conditions for Pre-construction phase:-

- (i) No additional land shall be used /acquired for any activity of the project without obtaining proper permission.
- (ii) This environment clearance is issued subject to implement continuous online air monitoring and water quality monitoring before operational phase.
- (iii) PP to ensure 100 % recycling and Zero load discharge
- (iv) For controlling fugitive natural dust, regular sprinkling of water & wind shields at appropriate distances in vulnerable areas of the plant shall be ensured.
- (v) Regular monitoring of the air quality, including SPM & SO2 levels both in work zone and ambient air shall be carried out in and around the power plant and records shall be maintained. The location of monitoring stations and frequency of monitoring shall be decided in consultation with Maharashtra Pollution Control Board (MPCB) & submit report accordingly to MPCB.
- (vi) Necessary arrangement shall be made to adequate safety and ventilation arrangement in furnace area.
- (vii) Proper Housekeeping programmers shall be implemented.
- (viii) In the event of the failure of any pollution control system adopted by the unit, the unit shall be immediately put out of operation and shall not be restarted until the desired efficiency has been achieve.
- (ix) A stack of adequate height based on DG set capacity shall be provided for control and dispersion of pollutant from DG set.(If applicable)
- (x) A detailed scheme for rainwater harvesting shall be prepared and implemented to recharge ground water.

- (xi) Arrangement shall be made that effluent and storm water does not get mixed.
- (xii) Periodic monitoring of ground water shall be undertaken and results analyzed to ascertain any change in the quality of water. Results shall be regularly submitted to the Maharashtra Pollution Control Board.
- (xiii) Noise level shall be maintained as per standards. For people working in the high noise area, requisite personal protective equipment like earplugs etc. shall be provided.
- (xiv) The overall noise levels in and around the plant are shall be kept well within the standards by providing noise control measures including acoustic hoods, silencers, enclosures, etc. on all sources of noise generation. The ambient noise levels shall confirm to the standards prescribed under Environment (Protection) Act, 1986 Rules, 1989.
- (xv) Green belt shall be developed & maintained around the plant periphery. Green Belt Development shall be carried out considering CPCB guidelines including selection of plant species and in consultation with the local DFO/ Agriculture Dept.
- (xvi) Adequate safety measures shall be provided to limit the risk zone within the plant boundary, in case of an accident. Leak detection devices shall also be installed at strategic places for early detection and warning.
- (xvii) Occupational health surveillance of the workers shall be done on a regular basis and record maintained as per Factories Act.
- (xviii) The company shall make the arrangement for protection of possible fire hazards during manufacturing process in material handling.
- (xix) The project authorities must strictly comply with the rules and regulations with regard to handling and disposal of hazardous wastes in accordance with the Hazardous Waste (Management and Handling) Rules, 2003 (amended). Authorization from the MPCB shall be obtained for collections/treatment/storage/disposal of hazardous wastes.
- (xx) The company shall undertake following Waste Minimization Measures:
 - Metering of quantities of active ingredients to minimize waste.
 - Reuse of by- products from the process as raw materials or as raw material substitutes in other process.
 - · Maximizing Recoveries.
 - Use of automated material transfer system to minimize spillage.
- (xxi) Regular mock drills for the on-site emergency management plan shall be carried out. Implementation of changes / improvements required, if any, in the on-site management plan shall be ensured.
- (xxii) A separate environment management cell with qualified staff shall be set up for implementation of the stipulated environmental safeguards.
- (xxiii) Transportation of ash will be through closed containers and all measures should be taken to prevent spilling of the ash.

- (xxiv) Separate silos will be provided for collecting and storing bottom ash and fly ash.
- (xxv) Separate funds shall be allocated for implementation of environmental protection measures/EMP along with item-wise breaks-up. These cost shall be included as part of the project cost. The funds earmarked for the environment protection measures shall not be diverted for other purposes and year-wise expenditure should reported to the MPCB & this department
- (xxvi) The project management shall advertise at least in two local newspapers widely circulated in the region around the project, one of which shall be in the marathi language of the local concerned within seven days of issue of this letter, informing that the project has been accorded environmental clearance and copies of clearance letter are available with the Maharashtra Pollution Control Board and may also be seen at Website at http://ec.maharashtra.gov.in
- (xxvii) Project management should submit half yearly compliance reports in respect of the stipulated prior environment clearance terms and conditions in hard & soft copies to the MPCB & this department, on 1st June & 1st December of each calendar year.
- (xxviii)A copy of the clearance letter shall be sent by proponent to the concerned Municipal Corporation and the local NGO, if any, from whom suggestions/representations, if any, were received while processing the proposal. The clearance letter shall also be put on the website of the Company by the proponent.
- (xxix) The proponent shall upload the status of compliance of the stipulated EC conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB. The criteria pollutant levels namely; SPM, RSPM. SO₂, NOx (ambient levels as well as stack emissions) or critical sectoral parameters, indicated for the project shall be monitored and displayed at a convenient location near the main gate of the company in the public domain.
- (xxx) The project proponent shall also submit six monthly reports on the status of compliance of the stipulated EC conditions including results of monitored data (both in hard copies as well as by e-mail) to the respective Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB.
- (xxxi) The environmental statement for each financial year ending 31st March in Form-V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of EC conditions and shall also be sent to the respective Regional Offices of MoEF by e-mail.
- 4. The environmental clearance is being issued without prejudice to the action initiated under EP Act or any court case pending in the court of law and it does not mean that project proponent has not violated any environmental laws in the past and whatever decision under EP Act or of the Hon'ble court will be binding on the project proponent. Hence this clearance does not give immunity to the project proponent in the case filed against him, if any or action initiated under EP Act.

- The Environment department reserves the right to revoke the clearance if conditions stipulated are not implemented to the satisfaction of the department or for that matter, for any other administrative reason.
- Validity of Environment Clearance: The environmental clearance accorded shall be valid for a period of 7 years as per MoEF&CC Notification dated 29th April, 2015 to start of production operations.
- 7. In case of any deviation or alteration in the project proposed from those submitted to this department for clearance, a fresh reference should be made to the department to assess the adequacy of the condition(s) imposed and to incorporate additional environmental protection measures required, if any.
- 8. The above stipulations would be enforced among others under the Water (Prevention and Control of Pollution) Act, 1974, the Air (Prevention and Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986 and rules there under, Hazardous Wastes (Management and Handling) Rules, 1989 and its amendments, the public Liability Insurance Act, 1991 and its amendments.
- 9. Any appeal against this environmental clearance shall lie with the National Green Tribunal (Western Zone Bench, Pune), New Administrative Building, 1st Floor, D-, Wing, Opposite Council Hall, Pune, if preferred, within 30 days as prescribed under Section 16 of the National Green Tribunal Act, 2010.

(Malini Shankar) Member Secretary, SEIAA.

Copy to:

45

- Shri. R. C. Joshi, IAS (Retd.), Chairman, SEIAA, Flat No. 26, Belvedere, Bhulabhai desai road, Breach candy, Mumbai- 400026.
- 2. Shri T. C. Benjamin, IAS (Retired), Chairman, SEAC-I, 602, PECAN, Marigold, Behind Gold Adlabs, Kalyani Nagar, Pune 411014.
- 3. Additional Secretary, MoEF & CC, Indira Paryavaran Bhavan, Jorbagh Road, Aligani, New Delhi-110003.
- 4. Member Secretary, Maharashtra Pollution Control Board, with request to display a copy of the clearance.
- The CCF, Regional Office, Ministry of Environment and Forest (Regional Office, Western Region, Kendriya Paryavaran Bhavan, Link Road No- 3, E-5, Ravi-Shankar Nagar, Bhopal- 462 016). (MP).
- 6. Regional Office, MPCB, Kolhapur.
- 7. Collector, Kolhapur